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Strong Baroclinic Effects in a Light Jet in a Pulsed Coflow
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The role of strong baroclinic effects in a light jet injected into a pulsed coflow is analyzed. This case is believed to
be a model situation because the induced baroclinic torque competes with the jet shear. Phase-averaged mean and
turbulent properties are presented. A correct scaling is obtained from physical analysis. The striking observation
is here a transition from a jet to a wake behavior during the deceleration phase. This has a dramatic influence on
the evolution of the Reynolds stresses. We show that indirect effects (production terms) caused by the modification
of the mean flow by the unsteady body force strongly dominate the direct coupling of the turbulence with the
unsteady pressure field in this situation.

Nomenclature
A = butterfly valve angle, 2 deg
Acc = acceleration number defined in Eq. (6)
B = butterfly valve angle, 22 deg
C = butterfly valve angle, 42 deg
D = butterfly valve angle, 62 deg
d = diameter, m
f = pulsation frequency, 75 Hz
G11 = mean pressure turbulent source term of uu;

see Eq. (10)
g = acceleration of the gravity field, 9.81 m · s−2

L = jet half-width, m
Lr = radial length scale defined by Eq. (8), m
Lz = longitudinal length scale defined by Eq. (8), m
P = pressure, Pa
P11 = turbulent production term of uu; see Eq. (9)
T = pulsation period (= 1/2π f ), s
U = longitudinal velocity (z direction), m · s−1

u = fluctuation part of U , m · s−1

u′ = (uu)1/2, m · s−1

uu = longitudinal Reynolds stress, m2 · s−2

uv = Reynolds shear stress, m2 · s−2

V = radial velocity (r direction), m · s−1

v = fluctuation part of V , m · s−1

W = azimuthal velocity (θ direction), m · s−1

w = fluctuation part of W , m · s−1

(z, r, θ) = cylindrical coordinate system
�Ū = velocity scale defined in Eq. (5), m · s−1

�Ū ′ = velocity scale defined in Eq. (7), m · s−1

�ρ̄ = ρ∞ − ρ̄, kg · m−3

νt = turbulent diffusivity, m2 · s−1

ρ = density, kg · m−3

ρu = longitudinal turbulent mass flux, kg · m−2 · s−1
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�T = turbulent diffusion term; see Eq. (2)
σt = turbulent Prandtl number (= 0.7)
τa = pulsation timescale, s
τb = roll up of vorticity timescale, s
τ j (z) = mean advection timescale, s
τp = particle timescale, s

Subscripts

jet = jet-exit conditions
∞ = coflowing stream

Superscripts

jet = jet-exit conditions
· = time derivative (≡ ∂/∂t)
– = phase-averaged value

Introduction

C OMPLEX internal turbulent flows, strong density variations,
high unsteadiness, and buoyancy are important aspects of

the physics associated with mixture preparation in combustion
chambers.1 In such devices, accurate physical models are needed
to obtain quantitative numerical predictions for variances, correla-
tions, and therefore turbulent time- and length scales because these
parameters are especially important to further compute the initia-
tion and the development of combustion.2 Body-force effects can be
related to volumetric heat3 or acceleration field generated by a pres-
sure gradient along the flow4 or other body forces. In most practical
situations, flows are ducted and then subjected to imposed pressure
gradient, and it is important to estimate this effect on the flow. A
recent model based on vortex dynamics proposed by Sreenivasan
and Prasad5 has highlighted the role of the baroclinic torque on the
mixing process of volumetric heated or accelerated jet and plume.
However, they limit themselves to steady, in a time-averaged sense,
spatially accelerating flows. Flows are unsteady in a lot of practical
situations. The unsteadiness can arise from instabilities,6 imposed
transient phases like in pulsed jets, or from transient phases caused
by the flow configuration.7 For example, in the intake port of spark
ignition engines of natural gas vehicles, the injected gaseous fuel is
periodically submitted to a pulsed air flow, where acceleration can
reach values of ±3000g as a result of the opening and the closing
of valves.8

The purpose of the present paper is to present experimental ob-
servations of strong baroclinic effects in a light jet submitted to a
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pulsed coflow. A detailed analysis of the dynamical evolution of a
constant density jet in the same setup was discussed in a previous
paper9 by the authors.

This case is believed to be a model situation because the induced
baroclinic torque competes with the jet shear. Phase-averaged mean
and turbulent properties are presented and discussed in the acceler-
ation dominated region and during the deceleration phase.

The flow configuration and measurement techniques are de-
scribed first. Experimental results are then presented and analyzed.
We will particularly insist on the analysis of the transition from jet to
wake flow. In this complex situation, the timescale of the perturba-
tion is of the order of the body-force-induced timescale. Moreover,
the changes in the mean flow have a dramatic effect on the turbulent
field.

Description of the Flow Configuration
The experiments10 were conducted in a square duct having a total

length of 2.30 m and a cross section of 60 × 60 mm2 (Fig. 1). To
perform optical measurements in the upstream part of the duct, a
test section was equipped with transparent sides of 128-mm length
(Fig. 2). The upstream duct entrance opens out into ambient air, and
the downstream duct end connects to a vacuum pump. A motor-
ized butterfly valve is located upstream of the vacuum pump. The
air channel flow is pulsed at a frequency of f = 75 Hz. The pul-
sation is tuned with the channel acoustics and corresponds with a
half-wave mode. Both duct extremities are pressure nodes so that
for about 30 jet diameters downstream of the duct inlet, including
the test section, the coflow velocity U∞ is quasi-uniform and varies
from 5 to 30 m/s with time (Fig. 3). Resulting values of accelera-
tion/deceleration U̇∞ rise from +400g to −700g. With a grid and a
convergent-type collector placed upstream, the test section provides
a flat velocity profile during the pulsation and a turbulence intensity
of 1.5%. A djet = 4-mm-diam cylindrical tube placed in the center
of the duct generates the jet. A sonic nozzle is inserted in the tube.
It is located 10 cm (25 diameters) upstream of the exit of the tube
in order to obtain a developed pipe flow of axial velocity equal to
Ujet = 60 ms−1. To fix the jet-exit velocity in the time-varying pres-
sure field, one has to keep the volume in the tube downstream of
the sonic nozzle at a minimum. In the present setup, the measured
fluctuations of the jet-exit velocity are lower than 3% (Ref. 10).

Fig. 1 Experimental setup.

Fig. 2 Test section.

Fig. 3 Phase evolution of the coflow velocity U∞ (A: 2 deg, B: 22 deg,
C: 42 deg, and D: 62 deg).
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The behavior of light and homogeneous jets are compared in
this paper. Density variations are obtained by considering an air
channel flow and successively an air and an air–helium mixture
(ρmix/ρair = 0.55) jet flows. The corresponding Reynolds numbers,
based on outlet jet diameter, vary from 9 × 103 to 16.5 × 103, de-
pending on the initial density. A dimensional analysis based on the
initial momentum flux Mjet and the initial specific buoyancy flux
Bjet permits the definition of a characteristic length scale zb tak-
ing into account buoyancy effects.3 In the worst situation, that is,
U∞ = 30 m · s−1, we have zb/djet ≈ 43. So within the test section
(z/djet ≤ 25) the flow is momentum driven. Particular care has been
taken considering experimental boundary conditions in view of nu-
merical simulation comparison.10

Two-component laser Doppler velocimetry (LDV) (Dantec BSA)
is used and adapted to unsteady conditions. A description of the
parameters of the system is given in the Appendix. Note that a
Dantec 55X12 Beam Expander is used to reduce the size of the
measurement volume. The receiving optics are settled at 20 deg of
off-axis angle from the incident beam to minimize the contribution
of optical noise. A systematic study of the sensitivity of statistical
moments and data rate to the parameters of the system was per-
formed by Bury.10 Two original regulated oil seeding systems were
specially designed for the experiment. To limit the measurement
bias11 associated with nonhomogeneous seeding, we have achieved
equal coflow and jet seeding rates. The diameter of the olive oil
seed particles is of the order of 1 µm. Their time constant is thus
τp = ρp D2

p/18µ ≈ 3 × 10−6 s, where ρp is the density of the oil
particles, Dp their diameter, and µ the dynamic viscosity of air.
We have checked that they are able to track accurately the turbu-
lent flow in the present experiment. For example, downstream from
10 jet diameters and even in the most severe situation correspond-
ing to the highest shear in the coflowing jet, one can easily estimate
the ratio between this time constant and the Kolmogorov timescale.
This ratio is lower than 0.2. The droplets are thus able to track all of
the scales of the turbulent motion relevant for the present study. To
perform ensemble averaging, an encoder is connected to the motor-
ized butterfly valve. If we denote by an overbar Ū the phase average
of instantaneous quantity U at a particular phase t in the period T
of the pulsation, then

Ū (x, t) = lim
N → +∞

1

N

N∑

i = 1

U (x, t + iT ) (1)

The turbulence field is then deduced from the deviation between in-
stantaneous and previous phased average fields: u(x, t) = U (x, t) −
Ū (x, t). In our case more than N = 500 samples per encoder de-
gree have been used to average LDV data. Consequently, estimated
statistical absolute errors for mean and rms u′ = (u2)

1/2
values are,

respectively, �Ū ≈ 0.1.u′, �u′ ≈ 0.06.u′ with a 95% confidence
level. Therefore, even in the most severe situation corresponding
to the highest turbulence intensity, max(u′/Ū ) ≈ 30%, the relative
errors for mean and standard deviation values are always lower than
EŪ ≤ 3% and Eu′ ≤ 6%.

Measurements of Baroclinic Effects in the
Acceleration-Dominated Region

Measurements and Reynolds-averaged Navier–Stokes (RANS)
computations of the dynamical response of the light and homoge-
neous jet during the full cycle have been performed by Bury10 and
Saudreau.12 In a recent paper devoted to the homogeneous situation,9

we have shown that the unsteadiness leads to a longitudinal parti-
tion of the jet: near the jet exit the flow is a quasi-steady jet flow.
Jet spreading rate, axial decaying laws, and turbulent intensities
are similar to the corresponding steady coflowing jet. Farther down-
stream the flow is unsteady. Two remarkable features were observed
in the downstream unsteady region of the jet: 1) during the decel-
eration phase of the external stream, the flow is fully driven by the
pressure gradient in the duct; 2) during the acceleration phase of
the external stream, a large-scale structure similar to the structure
observed in accelerated jets develops, propagates downstream, and

Fig. 4 Light jet evolution of the scalar field during the deceleration and
the acceleration phases of the coflowing stream (RANS simulations):
deceleration phase (right column) and acceleration phase (left column).

modifies considerably the spreading rate, the entrainment process,
and the turbulent properties of the jet.

The goal of this paper is not to repeat the full analysis in the case
of the light jet because main features are recovered12 (Fig. 4). We
will focus on the deceleration phase of the external stream. Indeed,
one striking observation is that the variable density flow, driven by
unsteady adverse pressure gradient, exhibits unambiguous and very
strong baroclinic effects. These effects will be analyzed in the last
part of the paper.

Localization of the Acceleration-Dominated Region of the Jet
The effect of gravity g can be neglected here because we deal with

contrasted situations where |∂U∞/∂t | 	 g and tp 
 tg; tp = 1/2π f
is the timescale of the pulsation, and tg is the characteristic timescale
of gravity effects along the studying zone length L . We therefore
face a problem of mixed convection caused by external imposed
unsteadiness. The flow will be described henceforth using a cylin-
drical coordinate system (z, r, θ) to indicate the axial, radial, and
azimuthal directions. The origin is set at the tube exit and at the
center of the inner jet. The components of the instantaneous veloc-
ity field are denoted, respectively, by (U, V, W ). No mean swirling
motion was detected to within our measurement precision (W ≡ 0).
The components of the instantaneous fluctuating velocity field are
denoted respectively by (u, v, w). Following Eq. (1), an overbar
denotes Reynolds phase averaging.

Using classical hypothesis for quasi-parallel flows, it is possible
to show that, at first order, the mean momentum equation is

∂Ū

∂t
+ Ū

∂Ū

∂z
+ V̄

∂Ū

∂r
= 1

ρ̄

dP̄∞
dz

+ 1

ρ̄
�T (2)

�T includes the effects of turbulent diffusion. If Reynolds av-
eraging is used, leading-order terms are provided by Chassaing
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et al.13 The dP̄∞/dz is the pressure gradient as a direct conse-
quence of the imposed velocity variation Ū∞(t). In the external
region of the uniform coflow (Fig. 2), the momentum balance
reads simply ρ∞(dŪ∞/dt) = −dP̄∞/dz as confinement effects can
be neglected.10 The imposed external acceleration of timescale
τa = max[�U∞/(∂Ū∞/∂t)], τa ≈ 3 ms here, therefore implies the
presence of a longitudinal pressure gradient throughout the jet that
competes with the jet internal dynamics.

The balance of mean longitudinal momentum reads

∂Ū

∂t
+ Ū

∂Ū

∂z
+ V̄

∂Ū

∂r
= 1

ρ̄
�T + ∂Ū∞

∂t
+ (ρ∞ − ρ̄)

ρ̄

∂Ū∞
∂t

(3)

With Ū∞(t), the balance of the mean excess momentum reads

∂(Ū − Ū∞)

∂t
+ Ū

∂(Ū − Ū∞)

∂z
+ V̄

∂(Ū − Ū∞)

∂r

= 1

ρ̄
�T + (ρ∞ − ρ̄)

ρ̄

∂Ū∞
∂t

(4)

The unsteady body force appears clearly in Eqs. (3) and (4). The
body-force term obviously changes sign when heavy or light jets
are considered. However, this effect is not symmetrical with respect
to the neutral case ρ̄ = ρ∞ because the same �ρ̄ = ρ∞ − ρ̄ implies
the same force while heavy fluids have more inertia.

In steady coflowing jets, mean advection and turbulent diffusion
are in equilibrium and have therefore timescales of the same order
of magnitude.14 The convective timescale τ j (z) can be evaluated
using steady jet measurements with τ j (z) = z/Ūcl(z). Ūcl(z) is the
mean longitudinal velocity on the jet axis at the given station z, and
τ j (z) is of the same order of magnitude as the turbulent timescale
τturb = δ/u′, where δ is a characteristic length scale of the jet width
and u′ a characteristic velocity scale of the turbulence.15 Then, τ j (z)
increases strongly longitudinally [τ j (z) ≈ (z/djet)

2 in a freejet]. One
needs to compare the coflowing jet timescale τ j (z) with τa . It seems
natural to distinguish different longitudinal regions in which the
response of the jet flow to the imposed unsteadiness has a different
nature. In the present situation and whatever the phase, the coflowing
jet develops in a quasi-steady fashion along the first diameters as
τ j (z) 
 τa for z/djet < 10. The jet timescale and the perturbation
timescale are of the same order of magnitude at about z/djet ≈ 15,
whereas the pulsation can dominate farther downstream.

We will concentrate on the description of the downstream region
of the measurement domain during the deceleration phase. Figure 5
shows a longitudinal evolution of the different terms of Eq. (3) on the
axis of an air jet—constant density case—at the phase of maximum
deceleration {Ū∞(t) = 17.3 m · s−1; [dŪ∞(t)/dt] = −6600 m · s−2}.
The turbulent diffusion terms are deduced as a balance. The first

Fig. 5 Longitudinal evolution of the different terms of Eq. (3) on the
axis of an air jet at the phase of maximum deceleration: �, −−∂Ū/∂t; �,
−−Ū(∂Ū/∂z); �, (∂Ū∞/∂t); and �, (1/ρ̄)ΣT .

diameters are clearly associated with an equilibrium between ad-
vection and turbulent diffusion, whereas the competition between
pressure gradient and temporal acceleration dominates the down-
stream region (z/djet ≈ 20). This observation validates the timescale
comparisons and the longitudinal partition of the unsteady jet struc-
ture. The measurements displayed in what follows will show a clear
influence of the unsteady body force in the downstream region of
the light jet.

Phase Evolution of the Mean and Turbulent Velocity Field
The evolution of the radial profile of phase-averaged mean excess

velocity during the deceleration is plotted in Fig. 6. The four phases
A, B, C, D correspond, respectively, to butterfly valve angle de-
gree, external velocity, and deceleration: {θ, Ū∞, [∂Ū∞(t)/∂t]} of
2 deg, 29.9 m · s−1, −60 m · s−2; 22 deg, 26.3 m · s−1, −4500 m · s−2;
42 deg, 17.3 m · s−1, −6600 m · s−2; and 62 deg, 5.8 m · s−1,
−1500 m · s−2. The right-hand side (respectively, left-hand side)
of Fig. 6 corresponds to the light jet case (respectively, air jet case).

The evolution of Ū−Ū∞ during the deceleration phase is very
different for homogeneous and light jets. We see that the variation
of Ū−Ū∞ is very weak in the air jet. We will show in the next part that
this is an expected observation in a region of the airflow dominated
by the acceleration field. On the contrary, a negative mean excess
velocity is reached by the light jet at phases C and D. We also see
that the relative variation of the mean excess velocity is the largest
in the core of the jet where the density differences are a maximum.
Equation (4) shows to us that this behavior can only be the result
of the sink term caused by the body force. A physical analysis is
proposed in the next part to obtain an order of magnitude of the
negative mean excess velocity resulting from the adverse pressure
gradient in this unsteady situation.

In Figs. 7 and 8, we compare the evolutions of the phase-averaged
normal stresses for the homogeneous situation (left-hand side) and
the light jet (right-hand side). The sensitivity of the turbulent field of
the light jet to the deceleration is noticeable. A very strong damping
of both normal stresses is observed. The picture of turbulence mod-
ification in this situation is complex. The mean pressure gradient
terms [see Eq. (10) in the next section] are direct contributions.
However, the modification of the mean velocity gradient implies a
strong indirect effect because of the production term [see Eq. (9)
in the next section]. The orders of magnitude of these contributions
will be compared in the following. Figure 9 compares the evolution
of the phase-averaged shear Reynolds stress in homogeneous and
light jets. The right-hand side (light jet) was noisy in our experiment.
It was smoothed, and Fig. 9 provides qualitative information only.
The main message here is that the sign of uv changes in the light jet
during the deceleration. This is again expected to have a link with the
evolution of the mean lateral velocity gradient in the unsteady flow
displayed in Fig. 6. From Fig. 6, an estimation of the jet half-width

Fig. 6 Evolution of the radial profile of [Ū(r, t) −− Ū∞(t)] at z/djet = 20:
right-hand side, light jet and left-hand side, air jet. Phases presented:
+, A; �, B; *, C; and �, D.
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Fig. 7 Evolution of the radial profile of the longitudinal Reynolds
stress uu(r, t) at z/djet = 20: right-hand side, light jet and left-hand side,
air jet. Phases presented: +, A; �, B; ∗, C; and �, D.

Fig. 8 Evolution of the radial profile of the radial Reynolds stress
vv(r, t) at z/djet = 20: right-hand side, light jet and left-hand side, air
jet. Phases presented: +, A; �, B; ∗, C; and �, D.

Fig. 9 Evolution of the radial profile of the Reynolds shear stress
uv(r, t) at z/djet = 20: right-hand side, light jet and left-hand side, air
jet. Phases presented: +, A; �, B; ∗, C; and �, D.

l(z, t) can be done. As usual l(z, t) can be defined as the radius r ,
where Ū (r, z, t) − Ū∞(t) = 0.5[Ū (0, z, t) − Ū∞(t)]. In the homo-
geneous case, l(z, t) is constant in time. In the light case, the jet
half-width is first decreased considerably. Implications on the tur-
bulent mixing are not straightforward because we are not in a steady
situation. However, estimations can be done. In the homogeneous
case, the mass of external fluid incorporated in the unsteady coflow-
ing jet at Z/D = 25 is 11% lower than the amount that would be for
a quasi-steady coflowing jet.9 In the present light jet case as the jet
half-width and turbulent fluctuations strongly decrease and as the
mean shear is inverted, a reduction of the mixing should occur. This
reduction is confirmed by RANS second-order computations and is
greater than the reduction observed in the homogeneous flow.12

Physical Analysis and Scaling in the
Acceleration-Dominated Region

It is first interesting to discuss the extreme situation in which
the acceleration timescale is much smaller than the jet timescale
τa 
 τ j (z). The response of a constant density flow is straightfor-
ward with [∂Ū (r, z, t)/∂t] = [dŪ∞(t)/dt] ⇒ Ū (r, z, t) − Ū∞(t) is
constant in time. This is clearly the evolution observed on the left-
hand side of Fig. 6. We are therefore in a region of the flow where
this hypothesis is a good approximation.

The situation is more complex in variable density flows:
τa 
 τ j (z) implies a situation of “free” convection. Excess velocity
scales are therefore driven by body force,16 and the relevant param-
eters are timescale τa ; body force per unit mass �ρ̄/ρ̄[dŪ∞(t)/dt];
and local length scale (width L) of the unsteady jet. A competition
between the body force and unsteady terms in Eq. (4) results in the
following velocity scale �Ū :

�Ū

τa
≈ �ρ̄

ρ̄

dŪ∞(t)

dt
⇒ �Ū ≈ �ρ̄

ρ̄
�Ū∞ (5)

This scaling is relevant only if advective terms caused by body force
are not of the same order of magnitude. In a non-Galilean frame
of reference moving at the velocity Ū∞(t), these terms scale with
�Ū 2/L . An acceleration number Acc can be defined as

Acc = �Ū/τa

�Ū 2/L
= L

�Ūτa

= ρ̄L[dŪ∞(t)/dt]

�ρ̄�Ū 2∞
(6)

Acc compares the relative distance �Ū · τa covered during τa to
the size L of the fluid parcel. If Acc 	 1, scaling Eq. (5) is valid
because �Ū · τa 
 L . On the contrary, if Acc 
 1, a competition
between the unsteady body force and advective terms results in the
excess velocity scale �Ū ′:

�U ′2

L
≈ �ρ̄

ρ̄

dŪ∞(t)

dt
⇒ �Ū ′ = ±

√

L

∣∣∣∣
�ρ̄

ρ̄

∣∣∣∣
dŪ∞(t)

dt
(7)

Nonlinear effects17 and roll up of the vorticity generated by the
baroclinic torque indeed become dominant at the time τb = L/�Ū ′

(Ref. 18). Note that Acc = (τb/τa)
2 = (�Ū ′/�Ū )2. Acc 
 1 there-

fore implies that τb 
 τa . The dimensional analysis just presented
thus enables us to distinguish two different flow regimes. In the first
one, the jet flow can be considered as “frozen” at the timescale of
the perturbation, and unsteady terms are dominant. In the second
regime, the body force has sufficient time to induce a nonlinear
behavior in the flow. This last situation is expected to have strong
similarities with the development of buoyant jets in a gravitational
field.19

Numerical simulations were performed by Saudreau12 for this
particular situation. The numerical code Melodif developed by
EdF20 was used. Favre-averaged Navier–Stokes equations were
solved by using second-order modeling for the Reynolds stresses.
The turbulent scalar fluxes were modeled by using a gradient hy-
pothesis. The mean velocity and density fields are very correctly
predicted by this approach. The comparison is not the goal of this
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paper, but we just remark that �ρ̄ ≈ 0.22 is a good order of magni-
tude for the density differences on the jet axis at 20djet.

If we choose the length scale L (L ≈ 5 mm) as the global half-
velocity diameter of the unsteady structure (see Fig. 6), |dŪ∞(t)/
dt | ≈ 6600 m · s−2 and �Ū∞ = 25 m/s, we obtain Acc = 0.23 in the
present situation. In other words, body-force effects are strong be-
cause light fluid lumps of the size L of the jet width have time to
travel over the distance L and begin to distort. Using Eq. (7), an
order of magnitude of the absolute value of the velocity difference
is then |�Ū ′| ≈ +2.7 m · s−1. The minimum mean excess velocity
measured in Fig. 5 is seen to scale with �Ū ′. The estimated value is
larger because the maximum value of deceleration was used in this
order of magnitude analysis.

This agreement confirms the strong influence of the unsteady
pressure gradient on the development of the mean flow. We observe
during this deceleration a change in the sign of the mean shear rate,
and the turbulence has to adapt to this change. The main features
of the Reynolds-stress balance in shear flows like jets is accurately
known in homogeneous21 or inhomogeneous,13,22 situations. In a
steady air jet, the production of longitudinal normal Reynolds stress
is the main positive source of turbulent kinetic energy. In this un-
steady situation, production is still a major term, and the turbulent
field can therefore be indirectly affected by the deceleration field
via changes of the mean gradients and of production terms. On the
other hand, a direct coupling of the turbulence with the unsteady
mean pressure field is clear in the Reynolds-stress equations.23 The
order-of-magnitude analysis can again be used to evaluate the ratio
between production P11 of the longitudinal Reynolds stress ρuu and
direct effect caused by the mean pressure gradient G11.

We define typical radial and axial length scales associated re-
spectively with the radial variation of the relative velocity Lr and
the axial variation of the relative density field Lz . In steady situa-
tion and for a quasi-parallel flow, we have Lr 
 Lz (Ref. 14). We
have checked from RANS second-order computations that for our
unsteady flow and in the far field of the jet this is also true:

Lr =
(

1

�Ū ′
∂Ū

∂r

)−1

, Lz =
(

1

�ρ̄

∂ρ̄

∂z

)−1

(8)

If we restrict our order-of-magnitude analysis to the main terms in
the high shear region, the production term and the mean pressure
gradient terms read

P11 ≈ −2ρuv
∂Ū

∂r
≈ −2ρ̄uv

�Ū ′

Lr
(9)

G11 = 2
ρu

ρ̄

∂ P

∂z
≈ −2ρu

∂Ū∞
∂t

(10)

The ratio is then using Eq. (7) with Lr ≈ L:

P11

G11
≈ uv

ρu

ρ̄�Ū ′

Lr (∂Ū∞/∂t)
≈ uv

ρu

�ρ̄

�Ū ′ (11)

Indeed, we have shown earlier that, in our situation, a reasonable
estimate for the order of magnitude for �Ū ′ is provided by Eq. (7).

Note that Reynolds averaging is used in the present order-of-
magnitude estimation because this is consistent with the experi-
mental data presented here. Mass-weighted or Favre averaging24 is
often used for the modeling procedure because the variable den-
sity closure schemes are developed as an extrapolation of constant
density closure schemes.13 The use of Favre averaging in the order-
of-magnitude estimation performed here would not change the con-
clusion. With Ui = Ũi + u′′

i , where the Favre average of Ui is defined
by ρ̄Ũi = ρUi , note that the turbulent mass flux ρu that appears in
Eq. (10) is equal to ρ̄u′′. Methods concerning the statistical averag-
ing of variable density turbulent flows and formal relationships in
second-order modeling are discussed precisely in Chassaing et al.13

and Joly.25

To get an estimation of ratio (11), we use a gradient hypothesis
for the turbulent momentum and mass fluxes. The use of a gra-
dient hypothesis might be questionable in this unsteady situation.

Indeed, direct contributions associated with the effect of the mean
pressure gradient contribute to the turbulent shear stress and to the
longitudinal turbulent mass flux themselves. An evaluation of these
contributions would require an estimate of the transverse turbulent
mass flux and of the variance of the density fluctuation.13 The full
problem is obviously complex with a strong coupling between all
turbulent variables. We conjecture here that using the classical gradi-
ent hypothesis in the evaluation of P11 and G11 still provides relevant
orders of magnitude.

One gets uv ≈ −2νt (∂Ū/∂r) and ρu ≈ (νt/σt )(∂ρ̄/∂z). The ratio
P11/G11 is thus finally

|P11/G11| ≈ 2σt (Lz/Lr ) 	 1 (12)

The RANS second-order computations12 confirm very clearly that
the production terms strongly dominate the direct pressure gradient
effect in this situation. The production of turbulence is noticeably
damped during the transition from the jet flow to the wakelike flow.
This explains the strong decrease of the normal Reynolds stresses
observed in Figs. 7 and 8. Moreover, second-order computations
predict a phase lag between the change of sign of the mean velocity
gradient and the corresponding change of sign of the turbulent shear
stress (Fig. 9). This time delay could not be accurately observed in
the experiment but is expected because the turbulent field needs time
to adapt to the changing situation. This time delay leads to a negative
turbulent production term that cannot be taken into account by using
k–ε modeling, for example. At the end of the deceleration phase,
the mean velocity gradient is positive, and the Reynolds shear stress
is negative. The production is then again positive as in steady mean
wake flow.26

These complex behaviours illustrate the very important role of
the baroclinic effects when a turbulent light jet is embedded in a
strongly pulsed coflow. The baroclinic torque leads to the genera-
tion of additional mean and fluctuating vorticity within the jet. As
a consequence, the mean shear rate and the production term are
strongly affected during the deceleration phase. These effects have
to be taken into account accurately when predicting mixing in such
situations.

Conclusions
Complex internal turbulent flows, strong density variations, and

high unsteadiness are key processes in the context of many industrial
applications. The coflow situation corresponds to an academic situ-
ation. A longitudinal partition of the jet that separates quasi-steady
regions from acceleration dominated regions is observed. For a low-
density jet, we have shown that pressure gradient effects caused by
acceleration imply a strong dynamical behavior in this acceleration-
dominated region. In particular, a transition from a jet flow to a wake
flow was observed experimentally. This implies a change of sign of
the mean velocity gradients and has a dramatic effect on the tur-
bulence field. Physical analysis has shown that the nature of this
unsteady flow is different from steady plumes as the timescale of
the perturbation is of the order of the body-force-induced timescale.
Main contributions to the evolutions of the mean excess velocity
and of the turbulent field were analyzed and deduced. Further work
is presently devoted to these different aspects. In particular, the test
of the performance of Reynolds-averaged Navier–Stokes (RANS)
and large-eddy-simulation turbulent models in these situations is
undertaken. As RANS models are concerned, the use of second-
order modeling is clearly needed to have a chance to capture the
main physical processes involved as the negative production term
during the transient phase.

Appendix: Parameters of the LDV System
Transmitting Optics

Colors of the beams: green for U velocity/blue for V velocity.
1) Gaussian beam diameter: 1.4 mm
2) Focal length of the front lens: 310 mm
3) Beam separation: 73.7 mm
4) Diameter of the measurement volume: G: 78 µm/B: 74 µm
5) Length of the measurement volume: G: 660 µm/B: 620 µm
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6) Fringe number: 36
7) Fringe spacing: G, 2.2 µm/B, 2.1 µm
8) Shift frequency: 40 MHz

Receiving Optics
1) Off-axis angle: 20 deg
2) Focal length of the front lens: 300 mm
3) Diameter of the pinhole: 100 µm
4) Magnification of the receiving optics: 3
5) Effective length of the measurement volume: 300 µm
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Gazeux dans les Moteurs Alternatifs,” Ph.D. Dissertation, Inst. National
Polytechnique de Toulouse, No. 1703, 2000.

11Lehmann, B., “Laser-Doppler-Messungen in einem Turbulenten
Freistrahl,” DFVLR, DFVLR-Forschungsbericht, No. 86-55, Cologne,
Germany, 1986.

12Saudreau, M., “Analysis of the Dynamics of Variable Density Turbu-
lent Jets in a Pulsed Coflowing Stream,” Ph.D. Dissertation, Inst. National
Polytechnique de Toulouse, No. 1873, Toulouse, France, 2002.

13Chassaing, P., Harran, G., and Joly, L., “Density Fluctuation Corre-
lations in Free Turbulent Binary Mixing,” Journal of Fluid Mechanics,
Vol. 279, 1994, pp. 239–278.

14Tenekees, H., and Lumley, J., A First Course in Turbulence, MIT Press,
Cambridge, MA, 1972.

15Chassaing, P., Turbulence en Mécanique des Fluides. Analyse du
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